Task parallelism with Chapel

Last updated on 2024-11-18 | Edit this page

Estimated time: 90 minutes

Overview

Questions

  • “How do I write parallel code for a real use case?”

Objectives

  • “First objective.”

Here is our plan to task-parallelize the heat transfer equation:

  1. divide the entire grid of points into blocks and assign blocks to individual tasks,
  2. each task should compute the new temperature of its assigned points,
  3. perform a reduction over the whole grid, to update the greatest temperature difference between temp_new and temp.

For the reduction of the grid we can simply use the max reduce statement, which is already parallelized. Now, let’s divide the grid into rowtasks x coltasks sub-grids, and assign each sub-grid to a task using the coforall loop (we will have rowtasks*coltasks tasks in total).

config const rowtasks = 2;
config const coltasks = 2;

// this is the main loop of the simulation
delta = tolerance;
while (c<niter && delta>=tolerance) {
  c += 1;

  coforall taskid in 0..coltasks*rowtasks-1 {
    for i in rowi..rowf {
      for j in coli..colf {
        temp_new[i,j] = (temp[i-1,j] + temp[i+1,j] + temp[i,j-1] + temp[i,j+1]) / 4;
      }
    }
  }

  delta = max reduce (temp_new-temp);
  temp = temp_new;

  if c%outputFrequency == 0 then writeln('Temperature at iteration ',c,': ',temp[x,y]);
}

Note that now the nested for loops run from rowi to rowf and from coli to colf which are, respectively, the initial and final row and column of the sub-grid associated to the task taskid. To compute these limits, based on taskid, we need to compute the number of rows and columns per task (nr and nc, respectively) and account for possible non-zero remainders (rr and rc) that we should add to the last row and column:

config const rowtasks = 2;
config const coltasks = 2;

const nr = rows/rowtasks;
const rr = rows-nr*rowtasks;
const nc = cols/coltasks;
const rc = cols-nc*coltasks;

// this is the main loop of the simulation
delta = tolerance;
while (c<niter && delta>=tolerance) {
  c+=1;

  coforall taskid in 0..coltasks*rowtasks-1 {
    var rowi, coli, rowf, colf: int;
    var taskr, taskc: int;

    taskr = taskid/coltasks;
    taskc = taskid%coltasks;

    if taskr<rr {
      rowi=(taskr*nr)+1+taskr;
      rowf=(taskr*nr)+nr+taskr+1;
    }
    else {
      rowi = (taskr*nr)+1+rr;
      rowf = (taskr*nr)+nr+rr;
    }

    if taskc<rc {
      coli = (taskc*nc)+1+taskc;
      colf = (taskc*nc)+nc+taskc+1;
    }
    else {
      coli = (taskc*nc)+1+rc;
      colf = (taskc*nc)+nc+rc;
    }

    for i in rowi..rowf {
      for j in coli..colf {
      ...
}

As you can see, to divide a data set (the array temp in this case) between concurrent tasks, could be cumbersome. Chapel provides high-level abstractions for data parallelism that take care of all the data distribution for us. We will study data parallelism in the following lessons, but for now, let’s compare the benchmark solution with our coforall parallelization to see how the performance improved.

BASH

chpl --fast parallel1.chpl
./parallel1 --rows=650 --cols=650 --x=200 --y=300 --niter=10000 --tolerance=0.002 --outputFrequency=1000

OUTPUT

The simulation will consider a matrix of 650 by 650 elements,
it will run up to 10000 iterations, or until the largest difference
in temperature between iterations is less than 0.002.
You are interested in the evolution of the temperature at the position (200,300) of the matrix...

and here we go...
Temperature at iteration 0: 25.0
Temperature at iteration 1000: 25.0
Temperature at iteration 2000: 25.0
Temperature at iteration 3000: 25.0
Temperature at iteration 4000: 24.9998
Temperature at iteration 5000: 24.9984
Temperature at iteration 6000: 24.9935
Temperature at iteration 7000: 24.9819

The simulation took 17.0193 seconds
Final temperature at the desired position after 7750 iterations is: 24.9671
The greatest difference in temperatures between the last two iterations was: 0.00199985

This parallel solution, using 4 parallel tasks, took around 17 seconds to finish. Compared with the ~20 seconds needed by the benchmark solution, seems not very impressive. To understand the reason, let’s analyse the code’s flow. When the program starts, the main thread does all the declarations and initialisations, and then, it enters the main loop of the simulation (the while loop). Inside this loop, the parallel tasks are launched for the first time. When these tasks finish their computations, the main task resumes its execution, it updates delta, and everything is repeated again. So, in essence, parallel tasks are launched and resumed 7750 times, which introduces a significant amount of overhead (the time the system needs to effectively start and destroy threads in the specific hardware, at each iteration of the while loop).

Clearly, a better approach would be to launch the parallel tasks just once, and have them executing all the simulations, before resuming the main task to print the final results.

config const rowtasks = 2;
config const coltasks = 2;

const nr = rows/rowtasks;
const rr = rows-nr*rowtasks;
const nc = cols/coltasks;
const rc = cols-nc*coltasks;

// this is the main loop of the simulation
delta = tolerance;
coforall taskid in 0..coltasks*rowtasks-1 {
  var rowi, coli, rowf, colf: int;
  var taskr, taskc: int;
  var c = 0;

  taskr = taskid/coltasks;
  taskc = taskid%coltasks;

  if taskr<rr {
    rowi = (taskr*nr)+1+taskr;
    rowf = (taskr*nr)+nr+taskr+1;
  }
  else {
    rowi = (taskr*nr)+1+rr;
    rowf = (taskr*nr)+nr+rr;
  }

  if taskc<rc {
    coli = (taskc*nc)+1+taskc;
    colf = (taskc*nc)+nc+taskc+1;
  }
  else {
    coli = (taskc*nc)+1+rc;
    colf = (taskc*nc)+nc+rc;
  }

  while (c<niter && delta>=tolerance) {
    c = c+1;

    for i in rowi..rowf {
      for j in coli..colf {
        temp_new[i,j] = (temp[i-1,j] + temp[i+1,j] + temp[i,j-1] + temp[i,j+1]) / 4;
      }
    }

    //update delta
    //update temp
    //print temperature in desired position
  }
}

The problem with this approach is that now we have to explicitly synchronise the tasks. Before, delta and temp were updated only by the main task at each iteration; similarly, only the main task was printing results. Now, all these operations must be carried inside the coforall loop, which imposes the need of synchronisation between tasks.

The synchronisation must happen at two points:

  1. We need to be sure that all tasks have finished with the computations of their part of the grid temp, before updating delta and temp safely.
  2. We need to be sure that all tasks use the updated value of delta to evaluate the condition of the while loop for the next iteration.

To update delta we could have each task computing the greatest difference in temperature in its associated sub-grid, and then, after the synchronisation, have only one task reducing all the sub-grids’ maximums.

var delta: atomic real;
var myd: [0..coltasks*rowtasks-1] real;
...
//this is the main loop of the simulation
delta.write(tolerance);
coforall taskid in 0..coltasks*rowtasks-1
{
  var myd2: real;
  ...

  while (c<niter && delta.read() >= tolerance) {
    c = c+1;
    ...

    for i in rowi..rowf {
      for j in coli..colf {
        temp_new[i,j] = (temp[i-1,j] + temp[i+1,j] + temp[i,j-1] + temp[i,j+1]) / 4;
        myd2 = max(abs(temp_new[i,j]-temp[i,j]),myd2);
      }
    }
    myd[taskid] = myd2

    // here comes the synchronisation of tasks

    temp[rowi..rowf,coli..colf] = temp_new[rowi..rowf,coli..colf];
    if taskid==0 {
      delta.write(max reduce myd);
      if c%outputFrequency==0 then writeln('Temperature at iteration ',c,': ',temp[x,y]);
    }

    // here comes the synchronisation of tasks again
  }
}

Challenge 4: Can you do it?

Use sync or atomic variables to implement the synchronisation required in the code above.

One possible solution is to use an atomic variable as a lock that opens (using the waitFor method) when all the tasks complete the required instructions

var lock: atomic int;
lock.write(0);
...
//this is the main loop of the simulation
delta.write(tolerance);
coforall taskid in 0..coltasks*rowtasks-1
{
   ...
   while (c<niter && delta>=tolerance)
   {
      ...
      myd[taskid]=myd2

      //here comes the synchronisation of tasks
      lock.add(1);
      lock.waitFor(coltasks*rowtasks);

      temp[rowi..rowf,coli..colf] = temp_new[rowi..rowf,coli..colf];
      ...

      //here comes the synchronisation of tasks again
      lock.sub(1);
      lock.waitFor(0);
   }
}

Using the solution in the Exercise 4, we can now compare the performance with the benchmark solution

BASH

chpl --fast parallel2.chpl
./parallel2 --rows=650 --cols=650 --x=200 --y=300 --niter=10000 --tolerance=0.002 --outputFrequency=1000

OUTPUT

The simulation will consider a matrix of 650 by 650 elements,
it will run up to 10000 iterations, or until the largest difference
in temperature between iterations is less than 0.002.
You are interested in the evolution of the temperature at the position (200,300) of the matrix...

and here we go...
Temperature at iteration 0: 25.0
Temperature at iteration 1000: 25.0
Temperature at iteration 2000: 25.0
Temperature at iteration 3000: 25.0
Temperature at iteration 4000: 24.9998
Temperature at iteration 5000: 24.9984
Temperature at iteration 6000: 24.9935
Temperature at iteration 7000: 24.9819

The simulation took 4.2733 seconds
Final temperature at the desired position after 7750 iterations is: 24.9671
The greatest difference in temperatures between the last two iterations was: 0.00199985

to see that we now have a code that performs 5x faster.

We finish this section by providing another, elegant version of the 2D heat transfer solver (without time stepping) using data parallelism on a single locale:

use Math; /* for exp() */

const n = 100, stride = 20;
var temp: [0..n+1, 0..n+1] real;
var temp_new: [1..n,1..n] real;
var x, y: real;
for (i,j) in {1..n,1..n} { // serial iteration
  x = ((i:real)-0.5)/n;
  y = ((j:real)-0.5)/n;
  temp[i,j] = exp(-((x-0.5)**2 + (y-0.5)**2)/0.01); // narrow Gaussian peak
}
coforall (i,j) in {1..n,1..n} by (stride,stride) { // 5x5 decomposition into 20x20 blocks => 25 tasks
  for k in i..i+stride-1 { // serial loop inside each block
    for l in j..j+stride-1 {
      temp_new[k,l] = (temp[k-1,l] + temp[k+1,l] + temp[k,l-1] + temp[k,l+1]) / 4;
    }
  }
}

We will study data parallelism in more detail in the next section.

Key Points

  • “To parallelize the diffusion solver with tasks, you divide the 2D domain into blocks and assign each block to a task.”
  • “To get the maximum performance, you need to launch the parallel tasks only once, and run the temporal loop of the simulation with the same set of tasks, resuming the main task only to print the final results.”
  • “Parallelizing with tasks is more laborious than parallelizing with data (covered in the next section).”